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Note 

Nonpolynomial Finite Difference Schemes 
and the Use of the Fast Fourier Transform 

1. INTROJECTION 

Several authors have considered various forms of difference approximations to 
partial differential equations in which the coefficients in the finite difference equations 
involve the exponential function. Such schemes were called “unified” difference 
schemes by Roscoe ] 1 ] and probably the first method of this type was formulated by 
Allen and Southwell 121. Their method was analysed by Dennis [3] and applications 
and extensions may be found in Allen 141, Dennis ef al. ]5], Dennis [6], Roscoe ]I 1, 
and Dennis and Hudson [ 7,8 1. These authors have concentrated on the use of such 
schemes with iterative methods, particularly successive overrelaxation. 

In this note we show that, for certain problems, the systems of linear equations 
generated from such difference approximations may be solved directly by FFT 
techniques. Computational results are presented for a model problem for various grid 
sizes and these results are compared with those obtained using standard difference 
formulae based on local polynomial approximations. 

2. THE MODEL PROBLEM 

The general approach is suficiently illustrated by considering a function 4(x, y) 
which satisfies an equation of the form 

3 -t- 3 + 2&Y) g = 4(x, Y), (1) 

over a rectangular region R. An equation of a form similar to (1) withp constant and 
q = 0 was considered by Allen [4] in a determination of the temperature distribution 
near to a sliding contact. 

The derivation of the difference scheme (Section 3) is valid for general p and q, but 
in order to solve the resulting equations by FFT methods p must be, at most, a 
function of y. (See, for example, Le Bail [9], who also gives a broader classification 
of equations which may be solved by FFT methods using standard polynomial based 
approximations.) 
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We consider in detail the case 

3 
P(Y)=------, 1.1 - y 

and 

3& 
q@, y) = (3 - x)(2 - y) ’ 

(2) 

(3) 

with R the unit square 0 <x, y < 1. For simplicity we impose Dirichlet boundary 
conditions given by 

qv, Y) = 4( 1, Y) = #(x, 0) = 0, and 4(x, 1) = 4x( 1 - x). (4) 

As is well known, FFT methods may be used also with Neumann or periodic con- 
ditions. 

Some comments on our choice of equation are relevant here. It is of course the 
case that, for a given equation, if one has some a priori knowledge of the expected 
form of its exact solution then this can help to determine the most suitable form of 
approximation to employ in the construction of a numerical solution. Thus, in this 
way the use of a particular type of approximation may yield good results with one 
equation but not with another. It is unlikely that Eq. (1) with the above choice of p. q, 
and boundary conditions has such an intrinsic bias in favour of either exponential or 
polynomial based approximations. 

One feature of our chosen equation is that near to the boundary y = 1 relatively 
large values (compared with unity) of p(y) are generated. It is well established in 111 
that for elliptic equations with such relatively large first derivative coefficients, the 
particular type of exponentially based approximation employed there produces an 
improved form of matrix representation of the differential equation compared with 
that derived using polynomial approximations. For our example we have made use of 
finite difference equations of the form given in [ 1 ] since these are applicable to a 
general second-order elliptic equation and hence the results obtained are likely to be 
indicative of what might be achieved for a wider class of problems. 

Numerical solutions to the above problem have been determined for five different 
grid sizes using the finite difference approximation derived in the following section 
and the standard five-point central difference approximation to (1). In view of the 
earlier remarks we anticipate that the results obtained using the exponential form of 
approximation will show some advantage over those obtained using polynomial 
approximations. This does indeed turn out to be the case and details are given in 
Section 4. 
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3. THE FINITE DIFFERENCE EQUATIONS 

Detailed arguments supporting the use of the form of approximation described 
below may be found in [ 11. Essentially the motivation is based on the idea of looking 
for difference equations whose solutions are locally identical to those of differential 
equations. For ordinary differential equations the application of these ideas is 
straightforward but for elliptic problems Roscoe [I] has shown that a difference 
representation with the required property would contain an infinite number of terms. 
Therefore he advocates the use of an alternative approximate procedure which 
involves splitting the differential equation into two parts, one containing all the x 
derivatives and the second all the y derivatives. The methods developed for ordinary 
differential equations are then applied to each part separately. The idea of splitting 
the equation and treating each part in the above fashion was described earlier by 
Allen [4] and his form of approximation turns out to be identical with that derived 
and analysed in [ 11. 

We rewrite Eq. (1) in the form 

so that 

(6) 

and at a mesh point (xi, yj) we solve Eq. (6) as if it were an ordinary differential 
equation to obtain the local approximation 

4 =Aee2PIY + B + (qi,j - at,/> Y/2P/, (7) 

where A and B are arbitrary constants. By setting y = yJV1, I; and y,+, in turn, 
equations for #iJ-,, (6i,j, and QliJ+, are obtained from (7) and A and B may thus be 
eliminated. From the resulting relation, aij may be eliminated using (5) with a 
standard polynomial approximation for #,,. The difference representation of (6) 
based on (7) reduces to the standard poiynomia~ approximation in the limit p -+ 0. 
Thus at (xi, yj) for a square mesh of side h we obtain 

(6t--l,j-t2+aj +bj)#i,j+$i+l,j +aj#i,j-1 +b~#i,j+l=h’qi,j, (8) 
where 

aj = cj/(ecJ - I), bj = aj &I, (9) 

and c, = 2pjh. Applying Roscoe’s general ftnite difference scheme [his Eq. (7.3)) to 
our particular problem produces an equation which is identical to (8). 
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The complete set of equations (8) for i = 1,2 . . . . . N, j = 1,2 ,..., N may be written in 
the matrix form as 

where (bj = ($iej, ~2.j’“” #hJ)T, A, is the N X N matrix 

~(2 + Qj + b,j) I 

A, = 
1 -(2+a/+bj) 1 

1 -(2 + a, + b,) 1 

! 

1 (11) 

1 -(2 + U/ + bj) 

Qj= h’(q,.j, q2.5--**+ qzv.JlT3 and 90* tb*+ 1 are, respectively, known vectors of # values 
onj=O,N+ 1. 

By expanding 4J in terms of the known (orthogonal) eigenvectors x, of (1 1 ), so that 

we obtain systems of equations for the Fourier harmonics Js., in the usual form of N 
decoupled tridiagonal systems each of order N. A typical system is of the form 

k,,&,, +b&.s=dF.,t 

aj&s,j- 1 + 4,jL.j + bjQi,,j+ 8 = (is,j (j = 2. 3 ,..., N - 1 f, (13) 

w&.N-1 + LdL = d,*, 1 

where hsqj denotes an eigenvalue of Aj and is given by 

d,,j = -(aj + bj) - 4 sin’ ” 
2(N + 1) 

(s, j = 1, 2,..., N), (14) 

and ~~,j=x~Qj*/Ixs12, where QT =Q, -a,&,, QT =Qj, j= 2, 3 ,..., N - 1, and 
QX=Q,-bh,,. Since aj, bj > 0 for all values of pi, using (14) it is easy o 
deduce that the usual Gauss elimination (Thomas) algorithm applied to (13) will 
always be stable with respect to the growth of round-off errors. This is not the case if 
standard central difference approximations are used; the resulting systems equivalent 
to (13) are formally stable only for 1 ~,~l ( l/h although round-off propagation was 
not found to be a serious problem for the range of values of N used on an ICL 1906s 
machine which has 11 decimal digit accuracy. This point is considered further in the 
following section. Both the exponential-based and polynomial-based schemes have a 
leading truncation error 0(/Z’). 
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FFT methods can be used to form the right-hand sides (isJ and to reconstruct the 
vectors +j using (12). The basic form of cyclic reduction which is often used together 
with Fourier analysis for the soluion of Poisson’s equation (Hackney [lo]. 
Swartztrauber [ 111, Temperton [ 121) cannot be used on the more general systems 
(10) since the coefficients in these equations depend on j. 

4. NUMERICAL RESULTS AND DISCUSSION 

Equation (1) was solved over the unit square for five different values of N in the 
range 7 to 127 using both schemes. It was found that, as N was increased, 
considerably greater changes took place in the computed solutions based on standard 
polynomial approximations than the corresponding solutions obtained using the 
exponential scheme. Thus, for the purposes of comparison, the solution for N= 127 
based on the exponential scheme was regarded as “accurate” and the values of RMS 
error and maximum modulus error given in Table I were calculated on this basis. It is 
clear that in all cases the RMS error for the exponantial scheme is less than the 
corresponding error for the standard scheme and additionally that the rate of increase 
in value of the error as N decreases is less for the exponential scheme than for the 
standard scheme. 

Similar remarks apply to the values of maximum modulus error given in Table I. It 
is worth noting that the major feature of the solution is a relatively large positive 
peak concentrated in the region 0.85 & y < 1, 0.25 <x < 0.75 with maximum value 1 
at the point (4, 1). The maximum modulus error was always found to occur in this 
area. It is perhaps therefore unrealistic to expect worthwhile results for N = 7 
(h = 0.125) and there appears to be no particularly clear explanation for the slightly 
anomalous value of maximum modulus error produced for this value of N using the 
exponential scheme. For N = 15 the maximum modulus errors of the standard 
scheme and exponential scheme represent, respectively, percentage errors of approx- 

TABLE I 

N 

7 
15 
31 
63 

127 

RMS Error Max. Mod. Error 

Standard Exponential Standard Exponential 

1.35-2 9.25.4 3.24,-l 2.18,-2 
2.3 l,-3 3.22.4 1.77,-l 2.39,-2 
3.15,-4 6.42,-5 6.52,-2 1.28,-2 
3.99,-5 7.43.-6 1.72,-2 3.12.-3 
5.79,-6 - 4.94,-3 - 

Note. Values of RMS error and maximum modulus error (derived as explained in the text) for 
various values of N using both the standard ~iynomial approximation and an approximation involving 
the exponential function where, for example, the notation 1.35,-2 means I.35 x 10e2. 
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imately 30% and 4%. The corresponding values for N = 63 are approximately 0.5 % 
and 0.1%. 

As a check on the accuracy of our computed solutions of the finite difference 
equations, these solutions were substituted back into the basic difference equations 
and the maximum modulus residual R, (over all the grid points) was calculated for 
each case. For the exponential scheme values of R, were found to decrease as N 
decreased, ranging from 1.5 x 10-l’ for N= 127 to 1.8 x 10-l’ for N= 7. For the 
polynomial-based scheme values of R, were found to be very similar to those for the 
exponential scheme only as far as N = 15, where R, had the value 2.0 x lo-” (the 
value for the exponential scheme was 1.5 x lo-“). For N = 7 the value of R, was 
found to be 5.1 x lo-” which is almost twice as large as its value for N = 31 and 
about thirty times the corresponding value for the exponential scheme. The most 
probable explanation for this result may be attributed to round-off error propagation 
effects in the solution of the tridiagonal systems. As was noted in Section 3 the 
Thomas algorithm as applied to (13) is always stable whereas for the polynomial- 
based scheme we require / pi] < l/h. This condition is satisfied for all j for 
N = 127,63, and 3 1 but for N = 7 (h = i) the maximum value of / p,/ is approx- 
imately 13. For N = 15 (h = &) the corresponding value is approximately 18. 

A disadvantage of methods based on schemes involving exponentials is that they 
are likely to involve more computational effort than methods based on standard 
schemes and this has been confirmed, for a given problem and method, in [8]. These 
authors were particularly concerned with producing diagonally dominant schemes in 
order to generate stable iterative methods of solution and they found that one 
iteration using an exponentially based scheme took approximately twice as long as an 
iteration using a standard scheme not involving exponentials. By running our 
programs many times we were able to conclude that typically the method based on 
the exponential scheme took about 10% more time than that using the standard 
scheme. 

Thus, overall, it seems reasonable to state that, for certain problems, the use of 
exponential schemes together with FFT techniques can be worthwhile. 
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